

Lokmanya Tilak Jankalyan Shikshan Sanstha's PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING Harpur Nagar, Umred Road (Near Bada Tajbagh), Nagpur-24 (Approved by AICTE, New Delhi, Govt. of Maharashtra and affiliated to Rashtrasant Tukdoji Maharaj Nagpur University) Email: principalpbcoe@gmail.com, Website: www.pbcoe.edu.in NAAC Accredited

TO WHOMSOEVER IT MAY CONCERN

This is certified that Number of books and chapters in edited volumes/books published and papers published in national/ international conference proceedings per teacher during last five year.

Year	2022	2021	2020	2019	2018
Number of proceedings	84	18	32	29	13
Total				176	

Certified Document from page No.1 to 47

Principal

Lokmanya Tilak Jankalyan Shikshan Sanstha's PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING Harpur Nagar, Umred Road (Near Bada Tajbagh), Nagpur-24 (Approved by AICTE, New Delhi, Govt. of Maharashtra and affiliated to Rashtrasant Tukdoji Maharaj Nagpur University) Email: principalpbcoe@gmail.com, Website: www.pbcoe.edu.in

NAAC Accredited

3.3.2 Number of books and chapters in edited volumes/books published and papers published in national/ international conference proceedings per teacher during last five year.

	For Year 2021			
Sr. No	Name of the Teacher	Title of the paper	Title of the book/chapters published/ Title of the proceedings of the conference	ISBN No.
1	Ms. U. V. Gaikwad		Advanced Engineering Materials, A complete textbook for B.E. Second Semester	9788195177271
2	Ms. U. V. Gaikwad		Applied Physics	9788195177271
3	Dr. A. C. Haldar	Recent Advancements of Curcumin Analogs and Curcumin Formulations in Context to Modern Pharmacotherapeut ics Perspectives	Applied Pharmaceutical Practice and Nutraceuticals: Natural Product Developments	9781003054894
4	Dr.(Mrs.) S. R. Suple	Existence of 1/sqrt(2) [y+z] - type plane gravitational waves in Bimetric Relativit y	Existence of 1/sqrt(2) [y+z] - type plane gravitational waves in Bimetric Relativit y	2319-4979
5	Prof. Mrs. N.R. Gautam	Investigation of the issue in the interlinking of River	Investigation of the issue in the interlinking of River	978-93-90631-56-8
6	Animeshchandr a G.M. Haldar	Highlights of Decade Long Progress of Nano Selenium Fabricated from Plant Biomass: Insights into Techniques and Mechanisms	Biogenic Sustainable Nanotechnology	9780323885355

Lokmanya Tilak Jankalyan Shikshan Sanstha's

PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING Harpur Nagar, Umred Road (Near Bada Tajbagh), Nagpur-24 (Approved by AICTE, New Delhi, Govt. of Maharashtra and affiliated to Rashtrasant Tukdoji Maharaj Nagpur University) Email: principalpbcoe@gmail.com, Website: www.pbcoe.edu.in NAAC Accredited

7	Animeshchandr a G.M. Haldar	Phytofabrication of Nickel based Nanoparticles : focus on environmental benign technology and therapeutic perspectives	Biogenic Sustainable Nanotechnology	9780323885355
8	Animeshchandr a G.M. Haldar	Phytofabrication of metal oxide/ironbased and their therapeutic and their therapeutic potentials: in-depth insights into the recent progress	Phytofabrication of metal oxide/ironbased and their therapeutic and their therapeutic potentials: in-depth insights into the recent progress	9780323885355
9	Mr. Kapil N. Hande	Real Time Markerless Facial Landmark Detection Using Deep learning	ICT Systems and Sustainability Springer	2367-3389
10	Dr M S Chaudhari	Review of Data Mining Techniques in Environmental Systems:An Advanced Approach	Review of Data Mining Techniques in Environmental Systems:An Advanced Approach	978-93-5547-072-0
11	Ms. A. A. Nikose	Sentimental Analysis on Social Media by using Deep	Sentimental Analysis on Social Media by using Deep	0886-9367
12	Ms. A. A. Nikose	Security and Privacy Preserving of Data using CPABE Scheme	Security and Privacy Preserving of Data using CPABE Scheme	2321-9653
13	Dr.(Ms)D.M.K ate	Study Of Leach Protocol To Reduce Network	Study Of Leach Protocol To Reduce Network Area Energy In Wireless Sensor Network	2395-0056

Lokmanya Tilak Jankalyan Shikshan Sanstha's

PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING Harpur Nagar, Umred Road (Near Bada Tajbagh), Nagpur-24 (Approved by AICTE, New Delhi, Govt. of Maharashtra and affiliated to Rashtrasant Tukdoji Maharaj Nagpur University) Email: principalpbcoe@gmail.com, Website: www.pbcoe.edu.in NAAC Accredited

			e neer cuitea	
		Area Energy In		
		Wireless Sensor		
		Network		
14	Prof. A.D.Anjikar	Mechanical Monster's Application in Era of Agricultural Industry: A Review	Mechanical Monster's Application in Era of Agricultural Industry: A Review	2455-3352
15	Dr.D. M. Kate	Design and Implementation of LEACH Protocol for Wireless Sensor Network to Reduce for Network Area Energy Improvement and Security Using MATLAB	Design and Implementation of LEACH Protocol for Wireless Sensor Network to Reduce for Network Area Energy Improvement and Security Using MATLAB	5878454
16	Ms. T. U. Pathan	Design and Analysis of MIMO Dual Band Patch Antenna for 5G New Radio Applications in mobile terminals	Design and Analysis of MIMO Dual Band Patch Antenna for 5G New Radio Applications in mobile terminals	2278-8735
17	Mr. S. G. Ghugal	Development of orbital Wrapping Machine	Development of orbital Wrapping Machine	2455-7838
18	Ms. A. A. Nikose	Security and Privacy Preserving of Data using CP- ABE Scheme	Security and Privacy Preserving of Data using CP- ABE Scheme	2321-9653

Principal

ADVANCED ENGINEERING MATERIALS A Complete Text Book For B.E. Second Semester

- Tanveer Quazi
- Jasmirkaur Randhawa
- Uma Gaikwad
- Smita C. Tolani
- Prashant Ambekar
- Shahin Sayyad

Alliance & Co.

ABOUT THE AUTHORS

Dr. Tanveer Quazi, Assistant Professor in Physics, Anjuman College of Engineering and Technology Nagpur, has 15 years of teaching Experience and published 19 research papers in International and national journals and contenence proceedings. He has participated and presented 22 research papers in various international and national conferences across India and abroad. He has worked on DRDO research Fellowship, received Visiting Scientist Fellowship- ICTP Federation Scheme (Funded by UNCSCO and IAEA)), Trieste, ITALY and was awarded INSA-DST FELLOWSHIP For SRF(National Science Academy). He has also worked at BARC Mumbai. His area of research includes Physics and Materials Science.

Dr (Ms) Jasmirkaur Randhawa, Assistant Professor in Physics, Government College of Engineering Nagpur has 22 years' experience of teaching Physics at Engineering and M Sc Physics. Her research interests are Electrochemical Gas Sensors, Composite materials and Impedance Spectroscopy. She is recipient of Prof. Sureah Chandra Medal for Best Paper Presented in 4th National Conference on Solid State Ionics, IIT Bombay. She has completed MODROBS project on materials' electrical characterization. She has published 18 research papers in National and International Journals. and conference proceedings, an international book chapter and edited a book. She is granted a patent on CO2 sensor.

Ms Uma V. Gaikwad, Assistant Professor in Physica, Priyadarshini Bhagwati College of Engineering Nagpur, has over 18 years of teaching Experience. She has published papers in International, national journal and two book chapters have been published in Apple Academic Press, CRC, Taylor and Francis. She has participated and presented research papers in various International and national conferences across India. Her area of research includes Physics and Materials Science.

Ms. Smita Chandar Tolani, Assistant Professor in Applied Physics, St. Vincent Pallotti College of Engineering And Technology Nagpur is recipient of Ram Chandra Chandurkar Gold Medal, K. L. Seth Gold Medal, National Crystallography Award, and P. L. Khare Prize in Physics. She has 16 years of teaching experience and number of publications in reputed journals, National/International conferences. She has authored a book and wrote chapters in three reputed national book publications on Physics, Research and Management. She is a columnist and writes for local newspapers. Her areas of interests include Solid State Physics, Materials Science, Vedic Mathematics, HR Management.

Dr. Prashant Ambekar, Assistant Professor in Physics, Dharampeth M. P. Deo Memorial Science College, Nagpur since 2003 has 23 years of research and teaching experience. He has received SRF (Direct Awardee) CSIR, New Delhi and Summer Research Fellowship jointly awarded by IAS, Bangalore, INSA, New Delhi and NASI, Allahabad for three times. He has completed two minor research projects of UGC WRO, Pune and published 21 papers at National/International journals and conferences and authored an international book chapter (Taylor and Francis). He is granted a patent on CO2 sensor. He has designed and developed instruments for UG/PG laboratories. His research interest includes Electrochemical gas sensors, photocatalytic water splitting, DSSCs and nanomaterials.

Dr. Shahin Sayyad, is working as an Assistant Professor with Shri. Shivaji Science College, Amravati. She has teaching experience in Engineering and Science Colleges. He has received MANF National Fellowship for regular Ph.D. work. She has published 16 research papers in reputed International and national journals and conference proceeding in India and abroad. One book chapters have been published in Advanced Nanomaterials and Nanotechnology, Springer publication. Her area of research is lead free piezoelectric materials and synthesis of nanomaterials.

Books Available at :

(Wholesale & Retail Centre of All Types of Educational Books From K.G. To P.G.) **ASHWIN BOOKS COLLECTION & DISTRIBUTORS** "PRATHMESH VIHAR", Flat No. 501, Dahipura, Untkhana, Great Nag Rd., Near Samrat Ashok Square, Nagpur - 440009 (Maharashtra) Mob.: 9226267742, 7507658000 Phone No. (0712) - 2749924 Fax. 0712-2749924.

Scanned with CamScanner

APPLIED PHYSICS A Complete Text Book For BE. Sem I

Tanveer Quazi

April 164

- Jasmirkaur Randhawa
- 🔍 Uma Gaikwad
- Smita C. Tolani
- Prashant Ambekar
- Shahin Sayyad

Alliance & Co.

 $\Delta l = \lambda_r - \lambda_i$ is maximum

 $\lambda_1 \neq \lambda_1$

Una V. Grackweig

As per the New Semester-wise Syllabus of R.T.M Nagpur University

B.Tech First semester

(New) 2022

APPLIED PHYSICS

Dr.Tanveer Quazi M. Sc. (Physics), Ph.D Anjuman College of Engineering and Technology, Nagpur

Uma Gaikwad M. Sc.(Physics), B Ed, PhD (pursuing) Priyadarshini Bhagwati College of Engineering, Nagpur

Lt. Dr. Prashant Ambekar M.Sc. (Physics), M. Phil, Ph.D Dharampeth M. P. Deo Memorial Science College, Nagpur Dr.Jasmirkaur Randhawa M Sc. (Physics), Ph.D Government College of Engineering, Nagpur

Smita C. Tolani M. Sc. (Physics), MBA(HR), B.Ed, PhD (pursuing) St. Vincent Pallotti College of Engineering and Technology, Nagpur

Dr. Shahin Sayyad M. Sc. (Physics), B.Ed, Ph.D Shri Shivaji Education Society Amravati's Science College, Nagpur

Alliance \$ Co. Nagpur

Dr. Terrever Deazt, Assistant Professor in Physics, Anjuman College of Engineering and Technology Ratios, bits 15 years of teaching Experience and published 19 research papers in International and automatic and contenence proceedings. He has participated and presented 22 research papers in various international and relieved contenence across India and abroad. He has worked on ORDO research Fellowship, received Wisling Scientist Fellowship. ICTP Federation Scheme (Funded by UNCSCO and IAEA)), Trieste, ITALY and was amonted INSA-OST FELLOWSHIP Fer SRE(Netional Science Academy). He has also worked at BARD Mombai. His area of research includes Physics and Materials Science.

Dr (Ma) Jacminkour Randhawa, Assistant Professor in Physics. Government College of Engineering Nagour loss 22 years' experience of teaching Physics at Engineering and M Sc Physics. Her research intercets are Electrochemical Gas Sensors, Composite materials and Impedance Spectroscopy. She is recipient of Prof. Sereth Chundra Media for Best Paper Presented in 4th National Conference on Solid State londes, ITT Bornbay, She has complete lanceHOBS project on materials' electrical characterization. She has published 18 research papers in Rational and International Journals and conference proceedings, an international book chapter and edited a book. See is granted a pateril an OD2 sensor.

Ne Uma V. Gallovad, Assistant Professor in Physics, Privatarshini Bingvali College of Englancing Ragan, his ever 18 years of teaching Experience. She has published papers in International, national journal and two beek clopies have been published in Apple Academic Press, CRC, Taylor and Francis. She has per licitated and presented research papers in various international and national conferences across India. Her area of research lockades Physics and Materials Science.

No. Smith Chemiter Televit, Assestant Protessor in Applied Physics, St. Veccent Pallott Codege of Engineering And Exchange Negacits receptors of Rem Chemiter's Chemiter's Gold Media, K. L. Seits Gold Media, National Crystalography Assest, and P.L. Rem Price in Physics. She has 16 years of leaching reportence and member of pablications in reported prevents, Remarking conferences, She has 16 years of leaching reportence and member of pablications in reported prevents, Remarking top fermices, She has 16 years of leaching reportence and member of pablications in reported prevents, Remarking top fermices, She has a scientification and writes Calapters in three reputer relations include Solid State Physics, Remarking Memory Volic Methematics, HS Management.

Dr. Pranhanet Anderkar, Assistant Protessor in Physics, Discrampeth M. P. Des Messarial Science College, Department 2003 her 23 years of research and leaching experience. He has received SHE (Direct Assisted) CSR. Box Debit and Source Research Febourship jointly awarded by MS, Bangalore, MSA, New Debit and MASL Attalaated for three times. He has complete Discource research projects of UGC WHO, Pure and published 21 papers at National/International Journals and conferences and address for international book chapter (Taylor and Francis). He is granted a potention CD2 seesars. He has designed antidioxelegedimenter for UG/Hs laboratories. His research interest includes Electrochemical gas seesars, photocologic water splitting, #SSDs and nanomalerials.

Dr. Blaibin Sayyad, is working as an Assistant Professor with Shri. Shivaji Science College, Amaarali. She has teaching experience in Engineering and Science Colleges. He has received MANE National Fellowship for regular Ph.D work. She has published 16 research papers in reputed International and national journats and conference proceeding in India and abroad. One book chapters have been published in Advanced Nanomaterials and Nanotechnology, Springer publication. Her area of research is lead free piczoelectric materials and synthesis of nanomaterials.

Book Available at :

(Wholesale & Retail Centre of All Type of Educational Books From K.G. To P.G.) ASHWIN BOOKS COLLECTION & DISTRIBUTORS

Prathmesh Vihar, Flat No. 501, Dahipura, Untkhana, Great Nag Rd. Near Samrat Ashok Square, Nagpur-440009 (Maharashtra) Mob.: 9226267742, 7507658000 Phone : (0712) - 2749924 Fax. 0712-2749924

Applied Pharmaceutical Practice and Nutraceuticals

Natural Product Developments

Debarshi Kar Mahapatra | Cristóbal Noé Aguilar | A. K. Haghi Editors

Contents

(\mathbf{n})	-
í	
á	C
Y	A
7	P
	1
()	
	2
U	
Ο	3
σ	
Ú	4
(1)	5
0	6
0	
	7

Con Abb	ntributorsix breviations	
Prej	zfacexiii	
1.	Chalcone (1,3-Diphenyl-2-Propene-1-One) Scaffold Bearing Natural Compounds as Nitric Oxide Inhibitors: Promising Antiedema Agents1	ру
	Debarshi Kar Mahapatra, Sanjay Kumar Bharti, and Vivek Asati	
2.	Emblicanin-A and Emblicanin-B: Pharmacological and Nano-Pharmacotherapeutic Perspective for Healthcare Applications	Ö
	Mohamad Taleuzzaman, Debarshi Kar Mahapatra, and Dipak Kumar Gupta	
3.	Recent In-Depth Insights of Nature-Based Anti-Worm Therapeutic Medications: Emerging Herbal Anthelmintics	0
	Ankita Soni, Paras Kothari, and Debarshi Kar Mahapatra	
4.	Insights into the Recent Scientific Evidences of Natural Therapeutic Treasures as Diuretic Agents43	Ŧ
	Vaibhav Shende, Sameer Hedaoo, and Debarshi Kar Mahapatra	
5.	Reviewing the Available Herbal Resources for Treating Psoriasis: Safe and Alternative Way for Therapeutics57	
	Shruti Dongare, Vaibhav Shende, and Debarshi Kar Mahapatra	
6.	Nutraceuticals and Brain Disorders	1
7.	1,3-Diphenyl-2-Propene-1-One-Based Natural Product Antidiabetic Molecules as Inhibitors of Protein Tyrosine Phosphatase-1B (PTP-1B)	1
	Debarshi Kar Mahapatra, Sanjay Kumar Bharti, and Vivek Asati	
8.	Re-Highlighting the Potential Natural Resources for Treating or Managing the Ailments of Gastrointestinal Tract Origin	i

Vaibhav Shende, Sameer A. Hedaoo, Mojabir Hussen Ansari, Pooja Bhomle, and Debarshi Kar Mahapatra

Non Commercial Use

9.	Recent Advancements of Curcumin Analogs and Curcumin Formulations in Context to Modern Pharmacotherapeutics Perspectives
	Animeshchandra G. M. Haldar, Kanhaiya M. Dadure, and Debarshi Kar Mahapatra
10.	Emerging Highlights on Natural Prodrug Molecules with Multifarious Therapeutic Perspectives147
	Mojabir Hussen Ansari, Vaibhav Shende, and Debarshi Kar Mahapatra
11.	Perspectives of Nature-Oriented Pharmacotherapeutics for the Effectual Management of Hemorrhoidal Symptoms163
	Taranpreet Kaur Bamrah, Mojabir Hussen Ansari, and Debarshi Kar Mahapatra
12.	Effect of Light on Transport of Potassium Thiocyanate in Aqueous Solutions
	Sónia I. G. Fangaia, Pedro M. G. Nicolau, Fernando A. D. R. A. Guerra, V. M. M. Lobo, and Ana C. F. Ribeiro
13.	Drug Discovery, Drug-Likeness Screening, and Bioavailability: Development of Drug-Likeness Rule for Natural Products
14.	Biomolecular and Molecular Docking: A Modern Tool in Drug Discovery and Virtual Screening of Natural Products
Ind	Swati Gokul Talele ex

Non Commercial Use

CHAPTER 9

Recent Advancements of Curcumin Analogs and Curcumin Formulations in Context to Modern Pharmacotherapeutics Perspectives

ANIMESHCHANDRA G. M. HALDAR¹, KANHAIYA M. DADURE², and DEBARSHI KAR MAHAPATRA^{3*}

¹Department of Applied Chemistry, Priyadarshini Bhagwati College of Engineering, Nagpur 440024, India

²Department of Chemistry, J. B. College of Science, Wardha 442001, India

³Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440034, India

*Corresponding author. E-mail: mahapatradebarshi@gmail.com

Author Copy

ABSTRACT

e Acader

For thousands of years in traditional medicines, excellent sources of pharmaceutical active ingredients are medicinal plants for the development of new drugs. Turmeric having the scientific name *Curcuma longa* belongs to the Zingiberaceae family which grows in the tropical and subtropical regions. A number of phytochemicals including curcumin, demethoxycurcumin, and bisdemethoxycurcumin are present in the roots of turmeric. The polyphenolic crystalline yellowish–orange colored curcumin is the active ingredient in the herbal remedy. In China and India, the use of turmeric in traditional medicines is very common till today. The use of curcumin from turmeric as a folk remedy continues today. This chapter

Non Commercial Use

EXISTENCE OF $\frac{1}{\sqrt{2}}(y+z)$ -TYPE PLANE GRAVITATIONAL WAVES IN BIMETRIC RELATIVITY

S. R. Suple

Priyadarshini Bhagwati College of engineering, Nagpur, India abhaassuple2007@gmail.com

ABSTRACT

In this paper, $Z = \frac{1}{\sqrt{2}}(y+z)$ - type plane gravitational wave is studied with source Cosmic Cloud Strings in Rosen's Bimetric theory of relativity. It is shown that there is nil contribution of Cosmic Cloud String in this theory. Only vacuum model can be constructed.

Keywords: Plane gravitational waves, Cosmic cloud strings, Bimetric Relativity.

AMS Code-83C05 (General relativity)

Introduction

The general theory of relativity is one of the most beautiful structures in all theoretical physics. In an attempt to get rid of the singularities, appear in the Einstein's General Theory of Relativity (GR), Rosen[8-9] has proposed a modified theory of gravitation within the framework of general relativity, which is called Bimetric Theory of Relativity (BR). In this theory, he has proposed a new formulation of the general relativity by introducing a background Euclidean metric tensor γ_{μ} in addition to the usual Riemannian metric tensor g_{ii} at each point of the four space-time. Withthe flat dimensional background metric, γ_{ij} the physical content of the theory is thesame as that of the general relativity.

Thus, now the corresponding two line elements in a coordinate system x1 are -

$$ds^{2} = g_{ij}dx^{i}dx^{j} (1.1)$$
$$d\sigma^{2} = \gamma_{ij}dx^{i}dx^{j} (1.2)$$

Where ds is the interval between two neighboring events as measured by means of a clock and ameasuring rod. The interval $d\sigma$ is an abstract or geometrical quantity not directly measurable. One can regard it as describing the geometry that would exist if no were present.H. Takeno matter [5] propounded a rigorous discussion of plane gravitational waves, definedvarious terms by formulating a meaningful mathematical version and obtained numerous results.

Using definition of plane wave, we will use $Z = \frac{1}{\sqrt{2}}(y+z)$ type plane here, gravitational waves by using the line elements,

$$ds^{2} = -A \left(dx^{2} + dy^{2} \right) - C \left(dz^{2} - dt^{2} \right)$$
(1.3)

The theory of plane gravitational waves have been studied by many investigators,H Takeno [6]; S. N. Pandey [15]; I. Goldman[7];R.H. Gowdy[11]; H. Bondi, et.al.[4];C.G.Torre [2]; P. A. Hogan [10];Deo and Ronghe[1];Deo and Suple [12],[13],[14] and they obtained the solutions .

In continuation of this, we will study Z = $\frac{1}{\sqrt{2}}(y+z)$ type plane gravitational wave

with Cosmiccloud string and will observe the result in the context of Bimetric Theory of Relativity.

Investigation of the Issues in the Inter Linking of Rivers: A Case Study for Godavari-Krishna Link Indira Sagar Polavaram Project

Gurusamy B. T¹, Vasudeo A. D², Gautam N.R³, Godbole S. P⁴ and Ghare A. D⁵

¹Research Scholar, Department of Civil Engineering VNIT, Nagpur-440010, India ²Associate Professor, Department of Civil Engineering VNIT, Nagpur-440010, India ³Asst Professor, Department of Civil Engg, Priyadarshini Bhagwati College of Engg, Nagpur-440024, India ⁴Assistant Professor, Dr. Ambedkar Institute of Management Studies and Research, Nagpur-440010, India ⁵Professor, Department of Civil Engineering VNIT, Nagpur-440010, India ⁵Professor, Department of Civil Engineering VNIT, Nagpur-440010, India ¹guru19april2009@gmail.com, ²avasudeo@yahoo.com, ³nimita_gautam@yahoo.com, ⁴snehal prakash1@rediffmail.com and ⁵adghare@yahoo.co.in

Abstract

Government is working and surviving on the basic principle of Interlinking of People in the form of collecting tax from people in order to provide products, facilities and services to the peoples and thereby to create Synchronous and Harmonious living environment with the characteristics of Concrete Society rather than Aggregate Society. Accordingly in the name of Interlinking of Rivers, collecting water from some Rivers and transferring water to other rivers becomes the basic Characteristics of a Government in order to create a Balance between Flood and Drought across the Time and Space domains of the nation and thereby to convert the existing Aggregate Basins into a Concrete Basin having high Resilience to the impact of Climate Change and that of Population Growth. Anyhow the observation in the last two decades shows the existence of a lot of Issues in the form of Criticism and Resistance against the implementation of National River Linking Projects (NRLP) of India designed based on the principle of Inter Basin Water Transfer (IBWT). This Review paper focuses on the investigation of various such Specific Issues including that of flora and fauna existing over one of the Peninsular Components of the NRLP of India named as Godavari-Krishna Link Indira Sagar Polavaram Project having the Idea Conceived since the year 1941, during the British Colonial Period. In addition various General Issues existing over the Interlinking of Rivers using NRLP of India have also been presented. Various quantitative Benefits including Irrigation Command Area benefits of this Indira Sagar Polavaram Link Project motivating towards successful implementation have also been explored. The Technical Characteristics such as Hydraulic and Hydrologic Characteristics including Flood handling capacity of this Link Project have been analyzed. The Flood Submergence Characteristics of the Godavari River with and without this link Project have been compared for both the cases of Upstream and Downstream sides of the Polavaram Dam.

Keywords: Concrete Basin versus Aggregate Basins; NRLP of India; Issues and Benefits of IBWT; Hydraulic & Hydrologic Characteristics; Godavari-Krishna Link Indira Sagar Polavaram Project;

1. Introduction

According to the basic Theory of Fluid Mechanics, by the Characteristics of Potential Distribution Function (Φ), the Flux flow per unit area (u) in x direction is given by the formula ($\partial \Phi / \partial x = -u$) while the direction of Flux flow is towards the direction of decrease in Potential. The Flux flow distribution function (Ψ) also called as Stream Function is completely characterized by Φ function (Streeter, 1958). Assuming the Potential Quantity (Φ) as the Authority exercised by an entity X, the Flow Quantity (Ψ) becomes the Responsibility placed over the entity X. Based on many Management Theories, the Authorities and Responsibilities are represented as two sides of same Coin because one cannot exist without the other (DuBrin, 2009). Accordingly the Flux Flow from points of high potential towards the points of low potential can be assumed as a natural process. Hence the Diversion of water from the Surplus River Basin having high Per Capita Water Availability (Φ) towards Deficit River Basin having Low Per Capita Water Availability using a set of IBWT (Ψ) based National River Linking Projects (NRLP) of India, becomes the natural Process of Water Resources Management to Balance the Flood and Drought in Space and Time Domain across any Geographical Region of India. The interlinking of Economy in the name Globalization Policy facilitates the Flow of Products and Services across the Boundary of a Country from the Source of High Availability towards the Destination Point of Demand across the World. The Figure 1 shows the positive impact of interlinked Economy or Globalization policy implemented by China and India from 1978 and 1991 respectively.

BIOGENIC SUSTAINABLE NANOTECHNOLOGY

Trends and Progress

Edited by Raghvendra Pratap Singh Alok R. Rai Ahmed Abdala Ratiram G. Chaudhary

Micro & Nano Technologies Series

9

Highlights of decade long progress of nano-selenium fabricated from plant biomass: insights into techniques and mechanisms

Debarshi Kar Mahapatra¹, <mark>Animeshchandra G.M. Haldar²</mark>, Kanhaiya M. Dadure³

¹DEPARTMENT OF PHARMACEUTICAL CHEMISTRY, DADASAHEB BALPANDE COLLEGE OF PHARMACY, NAGPUR, MAHARASHTRA, INDIA ²DEPARTMENT OF APPLIED CHEMISTRY, **PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING, NAGPUR, MAHARASHTRA, INDIA** ³DEPARTMENT OF CHEMISTRY, BAJAJ COLLEGE OF SCIENCE, WARDHA, MAHARASHTRA, INDIA

Chapter outline

9.1 Introduction	217
9.2 Selenium nanoparticles	. 219
9.3 Synthesis	219
9.4 Mechanism of formation of SeNPs	220
9.5 Recent reports of SeNPs formation	221
9.6 Applications in SeNPs in food packing	222
9.7 Toxicity of SeNPs	. 223
9.8 Conclusion	224
References	. 224

9.1 Introduction

Nanomaterials [nanoparticles (NPs)] are tiny particles that range in size from 1 to 100 nm in diameter. The physical, chemical, and biological characteristics of materials are altered as they are reduced to a nanometer scale (10^{-9} m) , leading to new uses (Sana et al., 2020). One of the most important recent technical advancements is nanotechnology's use in food packaging. It enhances the functionality of food packaging in ways that traditional packaging cannot. It also protects the quality of food while extending the shelf life of food during transit

and storage. Some NPs provide health advantages in addition to improving food safety and quality. Nanomaterials might also operate as carriers for active ingredients like biocides and antioxidants. Such characteristics are in accord with the food industry's current aspirations for innovative, cost-effective, biodegradable, and environment-friendly packaging materials (Bumbudsanpharoke & Ko, 2015). Consumer desire for safe and high-quality food items with a long shelf life has prompted the development of active packaging. It differs from other forms of food packaging in that it allows interaction among a food product, its packaging, and the food ecosystem, ensuring food safety and quality. Active packaging allows for the intentional release or absorption of chemicals toward or away from the packed food and its habitat (Singh et al., 2016). Nanomaterials may be included in the matrix of food packaging or applied to the surface in general. To ensure food quality and safety, other approaches include putting nanomaterials among different layers. Nanomaterial's absorption into biopolymers as a technique of food preservation is a promising breakthrough (Peighambardoust et al., 2019).

Because of their powerful biocidal capabilities, metal NPs are typically employed in active packaging. Because of their exceptional biocidal effects, ability to protect cells from free radicals, minimal toxicological effects, increased biological action, and satisfactory bioavailability in comparison to other sources of selenium element, selenium nanoparticles (SeNPs) are among NPs that have potential application as a biocide in biopolymers. Physicochemical approaches have previously been used to make SeNPs. These procedures, however, need the use of acidic pH, high temperatures, and powerful chemicals, resulting in NPs that are unsuitable for food packing. Green synthesis approaches, including the use of microorganisms or plant extracts, as an alternative, seems to be gaining popularity in recent years (Sana et al., 2021). Biological approaches are believed to be safe, simple, and cost-effective, and they create NPs that are chemical-free (De Moura et al., 2012; Jagadish et al., 2018).

In active food packaging, SeNPs have been used in a few trials as an antibacterial and antioxidant agent. SeNPs inserted into a multilayer film comprising an exterior layer of polyethylene terephthalate (PET) and an interior layer of low-density polyethylene (LDPE) were shown to have antioxidant action by a group of researchers (LDPE). The thickness of the film was discovered to have a significant impact on its antioxidant capability. The easier the free radicals diffused into the packing film were effectively scavenged, the thinner the film was. The antioxidant effects of SeNPs embedded into laminates were later effectively proved on actual food samples by inventors. Due to a confidentiality agreement with the supplier, the laminates' recipe was not revealed. SeNPs absorbed in gelatin and furcellaran composite films and furcellaran alone packaging have also shown to have biocidal effects. In these investigations, however, physicochemical procedures were used to synthesize the SeNPs. Because the use of NPs in food packaging is still relatively new, data on SeNPs migration from food packaging into food is sparse. Using hazelnuts wrapped in SeNPs-based LDPE multilayer packaging, researchers explored SeNP migration. According to their findings, SeNPs from packaging did not migrate much into meals. Despite this, additional research on SeNP migration in different packaging materials is required. Such research will give scientific proof of the possible dangers of NP migration into food. It is also worth noting that

BIOGENIC SUSTAINABLE NANOTECHNOLOGY

Trends and Progress

Edited by Raghvendra Pratap Singh Alok R. Rai Ahmed Abdala Ratiram G. Chaudhary

Micro & Nano Technologies Series

2

Phytofabrication of nickel-based nanoparticles: focus on environmental benign technology and therapeutic perspectives

Kanhaiya M. Dadure¹, Debarshi Kar Mahapatra², Animeshchandra G.M. Haldar³, Ratiram G. Chaudhary⁴, Ajay K. Potbhare⁴

¹DEPARTMENT OF CHEMISTRY, BAJAJ COLLEGE OF SCIENCE, WARDHA, MAHARASHTRA, INDIA ²DEPARTMENT OF PHARMACEUTICAL CHEMISTRY, DADASAHEB BALPANDE COLLEGE OF PHARMACY, NAGPUR, MAHARASHTRA, INDIA ³DEPARTMENT OF APPLIED CHEMISTRY, **PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING, NAGPUR, MAHARASHTRA, INDIA** ⁴POST GRADUATE DEPARTMENT OF CHEMISTRY, SETH KESARIMAL PORWAL COLLEGE OF ARTS AND SCIENCE AND COMMERCE, KAMPTEE, MAHARASHTRA, INDIA

Chapter outline

2.1	Introduction	41
2.2	Current status of Ni-based nanoparticles	44
2.3	Fabrication of Ni-based nanoparticles	47
	2.3.1 Fabrication of NiO nanoparticles using plant extracts	47
	2.3.2 Fabrication of NiO nanoparticles using microbes	47
2.4	Conclusion and future perspectives of Ni-based nanoparticles	51
Ref	erences	51

2.1 Introduction

Nowadays numerous metal-based nanoparticles (NPs) proposes greater attention towards photocatalytic, antibacterial, and anticancer, pathogenic microorganisms, and malignance cell lines.

NPs are extensively expanded because of their promising characteristics; besides emerging field of research, they are organized simple plus non-toxic. For instance, nickel oxide (NiO) NPs have widespread uses that were investigated in different fields of science including agriculture, pharmaceutical industry, and biomedical environment (Chen et al., 2013). Similarly, Ni NPs are broadly useful in various grounds as adsorbents, solar and fuel cells, catalytic agents, gas sensors, magnetic, and antibacterial resources (Berchmans et al., 1995; Kumar et al., 2015). Their unit magnitude, morphology, and extraordinary crystalline nature make more impact of physiochemical things, so it is of unlimited significance to bio produce NiO NPs with minor particle dimension, rather fewer than 20 nm, which might accomplish the efficacy of their functions (Huang et al., 2001). In last decades nanomaterials attracted the relevance of a large number of researchers due to their diverse physicochemical characteristics from bulk materials.

These exclusive properties originated from the large surface area of NPs that caused to their solicitations in many areas remarkably in catalysis (Chaudhary et al., 2015; Mondal et al., 2020). Among the nanomaterials, NiO NPs have a cherished nanostructure due to their advantageous electronic, magnetic, and catalytic chattels (Lambat et al., 2019; Tanna et al., 2015). Distinctive procedures have been used by scientists in formulating NPs, and these may incorporates chemical, biogenic, and organic techniques (Khedkar et al., 2020; Nasrollahzadeh et al., 2015). Inappropriately, their drawbacks like rigorous energy ingestion in physical process extract the technique very costly. Moreover, the consumption of toxic chemicals like sodium borohydride, or sodium citrate, as a reducing agent in chemical method confines function in medical pitches (Narayanan & Sakthivel, 2010). The most vital topographies of NiO are outstanding electrochemical constancy, little cost, endurance, and a noble ion storage substantial with great distance optical density (Chaudhary, Potbhare, et al., 2020; Mohammadijoo et al., 2014; Patil & Kadam, 2002; Yuvakkumar et al., 2014).

Numerous approaches are used for the production of NPs, for example, physical, chemical, enzymatic, and biological. Physical methods include plasma arcing, ball milling, thermal evaporation, spray pyrolysis, ultrathin films, pulsed laser desorption, lithographic methods, sputter deposition, layer-by-layer progress, molecular beam epistaxis, and dispersal flame production of NPs (Joerger et al., 1999; Chaudhary et al., 2017). The foundation of the plant extract is known to stimulate the features of the NPs (Umekar et al., 2020). This is because altered extracts encompass different intensities and amalgamations of an organic reducing agent (Mukunthan & Balaji, 2010).

Including these, the herbal-extract-mediated synthesis of NPs has expressively expanded the courtesy because of its easiness (Chouke et al., 2019; Umekar et al., 2021). The herbal extract can act as a durable dropping, soothing, and surpassing agent and has drawn the notice of scientific community due to its simple, fast, cost operative, and ecofriendly nature (Chaudhary et al., 2021). In the formation of NiO NPs, more care has been given toward the biosynthesis of NPs (using plant extracts), predominantly because of their accessibility, easiness, cost active, and nature-friendly attitude (Ahmed et al., 2019; Potbhare, Chaudhary, et al., 2019). Furthermore, the herbal extracts act as both reducing and capping agents, thus preventing the accumulation of Ni NPs (Imran Din & Rani, 2016). NiO NPs have fascinated various academics because of their chemical stability, superconductivity, electrocatalysis, and electron allocation potential. Nanoscaled NiO with a wide bandgap of 3.7–40 eV is an inherent p-type semiconductor used in a widespread range of biological functions

BIOGENIC SUSTAINABLE NANOTECHNOLOGY

Trends and Progress

Edited by Raghvendra Pratap Singh Alok R. Rai Ahmed Abdala Ratiram G. Chaudhary

Micro & Nano Technologies Series

Contents

List of contributors xvii Preface xxiii

1.	Building nanomaterials with microbial factories	1
	PABLO E. ANTEZANA, SOFIA MUNICOY AND MARTIN F. DESIMONE	
	1.1 Introduction	1
	1.2 Mechanisms of metal nanoparticles synthesis by bacteria	3
	1.3 Nanoparticle biosynthesis	7
	1.3.1 Silver nanoparticles	7
	1.3.2 Gold nanoparticles	11
	1.3.3 Magnetite nanoparticles	14
	1.3.4 Copper nanoparticles	19
	1.3.5 Selenium nanoparticles	21
	1.3.6 Quantum dots	24
	1.4 Conclusion	29
	1.5 Future prospects	29
	Acknowledgments	30
	References	30
2.	Phytofabrication of nickel-based nanoparticles: focus on environmental benign technology and therapeutic perspectives	41
	KANHAIYA M. DADURE, DEBARSHI KAR MAHAPATRA, ANIMESHCHANDRA G.M. HALDAR, RATIRAM G. CHAUDHARY AND AJAY K. POTBHARE	
	2.1 Introduction	41
	2.2 Current status of Ni-based nanoparticles	44
		v

	2.3 Fabrication of Ni-based nanoparticles	47
	2.3.1 Fabrication of NiO nanoparticles using plant extracts	47
	2.3.2 Fabrication of NiO nanoparticles using microbes	47
	2.4 Conclusion and future perspectives of Ni-based nanoparticles	51
	References	51
3.	Bacterial cellular mechanisms for synthesis of green nanostructured compounds	59
	SIMPAL KUMARI, ZHI FENG LI AND MIAN NABEEL ANWAR	
	3.1 Introduction	60
	3.2 Microorganism involved in the synthesis of nanoparticles	60
	3.2.1 Bacteria	61
	3.2.2 Fungi	62
	3.2.3 Cyanobacteria	64
	3.2.4 Others	64
	3.3 Synthesis of bacterial nanoparticles by using cellular mechanism	65
	3.3.1 Extracellular mechanism	65
	3.3.2 Intracellular mechanism	67
	3.4 Application of biologically synthesized nanoparticles	67
	3.4.1 Food	68
	3.4.2 Agriculture	68
	3.4.3 Environment	68
	3.4.4 Biomedical	68
	3.4.5 Textiles	69
	3.4.6 Renewable energy	69
	3.4.7 Electronics	69
	3.5 Conclusion	69
	References	69

Ecofriendly microorganism assisted fabrication of	
metal nanoparticles and their applications	77
SUDIP MONDAL, MANJIRI S. NAGMOTE, SURAJ V. KOMBE, BARUN K. DUTTA, TRIMURTI L. LAMBAT, PRASHANT B. CHOUKE AND ANIRUDDHA MONDAL	
4.1 Introduction	77
4.2 Bacteria-mediated synthesis	79
4.2.1 Copper nanoparticles synthesis by bacterial font	79
4.2.2 Silver nanoparticles synthesis by bacterial font	81
4.2.3 Gold nanoparticles synthesis using different bacterial font	86
4.3 Fungi-mediated synthesis	91
4.3.1 Copper nanoparticles synthesis by fungi font	91
4.3.2 Silver nanoparticles synthesis by fungi font	94
4.3.3 Gold nanoparticles synthesis by fungi font	98
4.4 Conclusion	99
References	100
Herbal spices and nanotechnology for the benefit of human health	107
SHALINI JIWAN CHAHANDE, RASHMI JACHAK, RAGINI CHAHANDE AND PALLAVI PANTAWANE	
5.1 Introduction	107
5.2 Complementary role of spices and nanotechnology in development of herbal medicine	108
5.3 Journey of spices for the betterment of human life	111
5.3.1 Spices from kitchen to clinic	111
5.4 Ancient to current status of the use of herbal spices and nanotechnology	112
5.5 Use of spices as a source of natural color	115
5.6 Use as a natural source of antioxidant and antimicrobial agents	116
5.7 Need for bioprospection of herbs and spices	117
	 Ecofriendly microorganism assisted fabrication of metal nanoparticles and their applications SUDIP MONDAL, MANJIRI S. NAGMOTE, SURAJ V. KOMBE, BARUN K. DUTTA, TRIMURTI L. LAMBAT, PRASHANT B. CHOUKE AND ANIRUDDHA MONDAL 4.1 Introduction 4.2 Bacteria-mediated synthesis 4.2.1 Copper nanoparticles synthesis by bacterial font 4.2.2 Silver nanoparticles synthesis by bacterial font 4.2.3 Gold nanoparticles synthesis using different bacterial font 4.3 Fungi-mediated synthesis 4.3.1 Copper nanoparticles synthesis by fungi font 4.3.2 Silver nanoparticles synthesis by fungi font 4.3.3 Gold nanoparticles synthesis by fungi font 4.3.4 Conclusion References Herbal spices and nanotechnology for the benefit of human health SHALINI JIWAN CHAHANDE, RASHMI JACHAK, RAGINI CHAHANDE AND PALLAVI PANTAWANE 5.1 Introduction 5.2 Complementary role of spices and nanotechnology in development of herbal medicine 5.3 Journey of spices for the betterment of human life 5.3.1 Spices from kitchen to clinic 5.4 Ancient to current status of the use of herbal spices and nanotechnology 5.5 Use of spices as a source of natural color 5.6 Use as a natural source of antioxidant and antimicrobial agents 5.7 Need for bioprospection of herbs and spices

	5.7.1 Medicinal bioprospecting	118
	5.7.2 Bioprospection of essential oils for medicinal uses	118
	5.7.3 Bioprospection of products from herbs and spices	119
	5.7.4 Bioprospecting of spices and herbs for drug discovery	121
	5.8 Issues and challenges with herbal nanomedicines	121
	5.9 Conclusion and future perspectives	123
	References	123
6.	Nanoparticles for sustainable agriculture: innovative potential with current and future perspectives	131
	SUBHASH RUPCHAND SOMKUWAR, RATNNADEEP C. SAWANT, PRASHANT P. INGALE, DHANRAJ T. MASRAM AND RUPALI RAMESH CHAUDHARY	
	6.1 Introduction	131
	6.2 Nanopesticides: agro-based formulations for pest control	132
	6.3 Nanofertilizers: recent trends and prospect in agriculture system	134
	6.4 Nanoparticles: uptake, translocations, and plant growth	136
	6.5 Recent advances in nanoparticles for plant protection	137
	6.6 Nanomaterials as agents to smart monitoring	138
	6.7 Nanoparticles for managing the agricultural postharvest waste	139
	6.8 Future perspective	140
	6.9 Conclusion	140
	References	140
7.	Fabrications and applications of	
	polymer-graphene nanocomposites for sustainability	149
	AJAY K. POTBHARE, TRUPTI S. SHRIRAME, VIDYASAGAR DEVTHADE, SACHIN T. YERPUDE, MAYURI S. UMEKAR, RATIRAM G. CHAUDHARY AND GANESH S. BHUSARI	
	7.1 Introduction	150
	7.2 History background of polymer–graphene nanocomposites	152

7.3 Overview of polymer–graphene nanocomposites	154
7.4 Preparation methods polymer–graphene nanocomposites	155
7.4.1 Solution cast technique	155
7.4.2 Melt mixing technique	156
7.4.3 In situ polymerization	157
7.4.4 Electrospinning technique	157
7.4.5 Electrodeposition	158
7.5 Modification techniques for graphene and graphene oxide	158
7.5.1 Grafting	158
7.5.2 Atom transfer radical polymerization	158
7.5.3 Radical polymerization techniques	159
7.5.4 Condensation techniques	159
7.6 Interactions of graphene oxide and graphene with polymers	160
7.6.1 Interactions of graphene oxide in polymer matrices	160
7.6.2 Interactions of graphene in polymer matrices	160
7.7 Natural polymers nanocomposites	161
7.7.1 Chitosan/graphene/graphene oxide nanocomposites	161
7.7.2 Cellulose/graphene/graphene oxide nanocomposites	162
7.8 Synthetic polymers nanocomposites	162
7.8.1 Polyvinylidene fluoride/graphene/graphene oxide nanocomposites	162
7.8.2 Polyurethane/graphene/graphene oxide nanocomposites	163
7.9 Conductive polymers nanocomposites	164
7.9.1 Polypyrrole/graphene/graphene oxide nanocomposites	164
7.9.2 Polyaniline/graphene/graphene oxide nanocomposites	165
7.10 Applications of graphene/polymer nanocomposites	166
7.10.1 Antibacterial activity	166
7.10.2 Sensors	167

	7.10.3 Energy storage devices	168
	7.10.4 High-performance materials	169
	7.10.5 Drug delivery	170
	7.10.6 Biomedical	171
	7.10.7 Water purification	171
	7.11 Conclusion	173
	References	174
8.	Phytofabrication of metal oxide/iron-based and their therapeutic and their therapeutic potentials: in-depth insights into the recent progress	185
	ANIMESHCHANDRA G.M. HALDAR, DEBARSHI KAR MAHAPATRA, KANHAIYA M. DADURE AND RATIRAM G. CHAUDHARY	
	8.1 Introduction	186
	8.1.1 Different ways to define NPs	186
	8.1.2 Development from ancient to scientific age	187
	8.2 Methods for nanoparticles fabrication	187
	8.2.1 Mechanical grinding/milling	189
	8.2.2 Laser ablation	189
	8.2.3 Electro-explosion	190
	8.2.4 Chemical vapor deposition	190
	8.2.5 Sol-gel process	190
	8.2.6 Biological fabrication	190
	8.3 Biofabrication of NPs	191
	8.4 Phytofabrication of NPs	192
	8.4.1 Stem-based phytofabrication	193
	8.4.2 Fruit-based phytofabrication	193
	8.4.3 Seed/seed coats-based phytofabrication	193
	8.4.4 Flower-based phytofabrication	194
	8.4.5 Root-based phytofabrication	194

	8.4.6 Leaves-based phytofabrication	194
	8.5 Mechanism of phytofabrication of NPs	194
	8.6 Therapeutic potentials of iron-based NPs	197
	8.7 Conclusion	204
	References	204
9.	Highlights of decade long progress of nano-selenium fabricated from plant biomass: insights into techniques and mechanisms	217
	DEBARSHI KAR MAHAPATRA, ANIMESHCHANDRA G.M. HALDAR AND KANHAIYA M. DADURE	
	9.1 Introduction	217
	9.2 Selenium nanoparticles	219
	9.3 Synthesis	219
	9.4 Mechanism of formation of SeNPs	220
	9.5 Recent reports of SeNPs formation	221
	9.6 Applications in SeNPs in food packing	222
	9.7 Toxicity of SeNPs	223
	9.8 Conclusion	224
	References	224
10.	Strategies of nanotechnology as a defense system in plants RASHMI JACHAK, SHALINI CHAHANDE, JAYSHREE THAWARE AND RUPALI MAHAKHODE	227
	10.1 Introduction	227
	10.2 Nanotechnology in plant defense mechanism	229
	10.2.1 Nanobiosensors	229
	10.2.2 Nanoencapsulation	231
	10.2.3 Metal-based nanoparticles	232

1

	10.2.4 Nanohybrid	234
	10.2.5 Nanoantioxidant mechanism	236
	10.3 Nanotoxicity and nanobusiness	237
	10.3.1 Nanotoxicity—monitored toxicity and potential health risks of nanomaterials	237
	10.3.2 Nanobusiness and its risky path	239
	10.4 Conclusion	239
	Future line of work	240
	References	240
	Further reading	248
_		
1.	Nanocomposites for dye remediation from	240
		245
	N.B. SINGH, N.P. SINGH, A.K. SINGH AND LELLOUCHE JEAN-PAUL	
	11.1 Introduction	249
	11.2 Dyes	251
	11.3 Nanocomposites	251
	11.3.1 Magnetic nanocomposites	253
	11.3.2 Metal/metal oxide-based nanocomposites	253
	11.3.3 Polymer nanocomposites	255
	11.3.4 Hydroxyapatite nanocomposites	257
	11.3.5 Carbon-based nanocomposites	257
	11.3.6 Ash-based nanocomposites	258
	11.3.7 Hydrogel-based nanocomposites	258
	11.3.8 Chitosan-based nanocomposites	261
	11.3.9 Other types of nanocomposites	261
	11.4 Photocatalytic degradation of dyes	261
	11.5 Conclusion	265
	References	265

 Sustainable hybrid nanomaterials for environmental remediation and agricultural advancement 		267
	PRERNA KHAGAR, SANGESH ZODAPE, UMESH PRATAP, ATUL MALDHURE, GAYATRI GAIKWAD AND ATUL WANKHADE	
	12.1 Introduction	267
	12.1.1 Hybrid nanomaterials	269
	12.1.2 Designing strategy and properties of hybrid nanomaterials	269
	12.2 Applications of hybrid nanomaterials	272
	12.2.1 Polymer-based hybrid nanomaterial	272
	12.2.2 Metal–organic framework	274
	12.2.3 Phytochemical-based hybrid nanomaterials	279
	12.3 Future aspects	283
	12.4 Concluding remarks	283
	References	283
13.	Bacterial synthesis of zinc oxide nanoparticles and their applications	293
	LEKSHMI GANGADHAR, NALLURI ABHISHEK, MADUTHURI VENKATESH, V.V.S. PRASAD, PENTAKOTA SURYA NAGENDRA, MADAKKA MEKAPOGU, AMAR P. GARG AND SIVA SANKAR SANA	
	13.1 Introduction	294
	13.2 Synthesis of nanoparticles	294
	13.2.1 Top-down approach	294
	13.2.2 Bottom-up approach	295
	13.3 Classification of nanomaterials	296
	13.3.1 Based on source	296
	13.3.2 Based on dimension	296
	13.3.3 Based on chemical composition	297
	13.3.4 Based on toxicity	297

	13.4 Green nanotechnology	
	13.5 Scheming of green nanomaterials	
	13.5.1 Approaches for green nanomaterial synthesis	
	13.6 Zinc oxide	300
	13.7 Applications of zinc oxide nanoparticles	301
	13.8 Biosynthesis of nanoparticles	303
	13.9 Bacterial synthesis of ZnO nanoparticles and its applications	304
	13.10 Conclusions	310
	References	310
14.	Environmental impact on toxicity of nanomaterials	315
J. PRAKASH ARUL JOSE, LAITH A. YOUNUS, KESAVAN BHASKAR REDDY, SIVA SANKAR SANA, LEKSHMI GANGADHAR, TIANYU HOU, ARGHYA CHAKRAVORTY AND PREETAM BHARDWAJ		
	14.1 Introduction	
14.2 A brief walk to nanomaterials and their properties		318
	14.3 The history of nanomaterials and their creation	
	14.4 Nanomaterial sources14.5 Types and classification of nanomaterials	
	14.5.1 Nanomaterials-based categories	321
	14.6 Applications of nanoparticles	324
	14.6.1 Applications in drugs and medications	324
	14.6.2 Fabrication and materials applications	326
	14.6.3 Applications in the environment	326
	14.6.4 Applications in electronics	327
	14.6.5 Applications in energy harvesting	327
	14.6.6 Applications in mechanical industries	328
	14.7 Nanomaterial regulations	328
	14.8 Nanomaterials problems and risk valuation	329
	14.8.1 Nanomaterial toxicity	329

	14.8.2 Toxicity of nanoparticles	330
	14.9 The potential for interactions between nanoparticles and living systems sources and health effects of nanoparticles	331
	14.10 Mechanisms of nanoparticle toxicity	332
	14.11 Nanoparticles in living systems – the surface effects	336
	14.12 Toxicology of nanoparticles	338
	14.13 Nanomaterials of different substances and their toxicity	341
	14.14 Solving toxic problem	346
	14.15 Conclusion	346
	References	347
15.	Sustainable nanotechnology for human	
	resource development	357
	DIPTI SINGH AND RAGHVENDRA PRATAP SINGH	
	15.1 Introduction	358
	15.2 The nano-agroparticles	358
	15.3 Nanotechnology for sustainable practice	359
	15.3.1 Chitosan in crop production	359
	15.3.2 Chitosan prevents deficiency of micronutrient in desired crops	360
	15.3.3 Chitosan vector for gene delivery	360
	15.3.4 Nanotechnology to improve the water quality for sustainable agriculture	361
	15.3.5 Nano-oligodynamic metal particles	361
	15.3.6 Nanotechnology for crop yield enhancement	362
	15.3.7 Applications of nanotechnology in food industries	363
	15.4 Chitosan nanoparticles synthesis	365
	15.4.1 Ionotropic gelation	365
	15.4.2 Coacervation	365
	15.4.3 Coprecipitation	366
	15.4.4 Microemulsion method	366

	15.4.5 Spray drying method	366
15.5 How to load active principle into chitosan nanoparticles		367
	15.6 Function of chitosan nanoparticles	
	15.7 Conclusion and future perspectives	367
	References	369
16.	Rationale and trends of applied nanotechnology	373
RAGHVENDRA PRATAP SINGH, ALOK R. RAI, RAJSHREE B. JOTANIA, RATIRAM G. CHAUDHARY AND AHMED ABDALA		
	16.1 Introduction	373
	16.2 Rules and regulations for nanotechnology	374
	16.3 Global nanotechnology sectors	376
	16.3.1 Nanotechnology industry in the world	377
	16.4 Types of nanotechnology	379
	16.4.1 Materials nanotechnology	379
	16.4.2 Green nanotechnology	380
	16.5 Nanotechnology applications	383
	16.6 Societal acceptance of nanotechnology	385
	References	385

Index 391

8

Phytofabrication of metal oxide/ironbased and their therapeutic and their therapeutic potentials: in-depth insights into the recent progress

> Animeshchandra G.M. Haldar¹, Debarshi Kar Mahapatra², Kanhaiya M. Dadure³, Ratiram G. Chaudhary⁴

¹DEPARTMENT OF APPLIED CHEMISTRY, PRIYADARSHINI BHAGWATI COLLEGE OF ENGINEERING, NAGPUR, MAHARASHTRA, INDIA²DEPARTMENT OF PHARMACEUTICAL CHEMISTRY, DADASAHEB BALPANDE COLLEGE OF PHARMACY, NAGPUR, MAHARASHTRA, INDIA³DEPARTMENT OF CHEMISTRY, BAJAJ COLLEGE OF SCIENCE, WARDHA, MAHARASHTRA, INDIA⁴POST GRADUATE DEPARTMENT OF CHEMISTRY, SETH KESARIMAL PORWAL COLLEGE OF ARTS AND SCIENCE AND COMMERCE, KAMPTEE, MAHARASHTRA, INDIA

Chapter outline

8.1	Introduction	186
	8.1.1 Different ways to define NPs	186
	8.1.2 Development from ancient to scientific age	187
8.2	Methods for nanoparticles fabrication	187
	8.2.1 Mechanical grinding/milling	189
	8.2.2 Laser ablation	189
	8.2.3 Electro-explosion	190
	8.2.4 Chemical vapor deposition	190
	8.2.5 Sol-gel process	190
	8.2.6 Biological fabrication	190
8.3	Biofabrication of NPs	191
8.4	Phytofabrication of NPs	192
	8.4.1 Stem-based phytofabrication	193
	8.4.2 Fruit-based phytofabrication	193
	8.4.3 Seed/seed coats-based phytofabrication	193

8	8.4.4 Flower-based phytofabrication	194
8	8.4.5 Root-based phytofabrication	194
8	8.4.6 Leaves-based phytofabrication	194
8.5	Mechanism of phytofabrication of NPs	194
8.6	Therapeutic potentials of iron-based NPs	197
8.7	Conclusion	204
Refe	rences	204

8.1 Introduction

The present era of science has been stimulating minimization in every sphere of commodity and technology and rising a new "Era of Nanomaterials." Science, which is involving a manipulation of matter in the nanoscale, has revolutionized the scientific field in the name of nanotechnology. The idea and concept of nanotechnology was conceived by Prof. R. Feynman in 1959 in his lecture entitled *There's Plenty of Room at the Bottom*, delivered at an American Physical Society meeting where he demonstrated a procedure to manage individual atoms and molecules. Further, development took place in 1974 at the International Conference on Industrial Production in Tokyo, where the word nanotechnology was used for the first time by N. Taniguchi to explain the superthin processing of materials of nanometer precision leading to the conception of nanosized mechanisms.

Every section of technology has received advantage because of nanoscience in various forms. The last decade has seen tremendous growth in this domain of science, which brings about advantages over conventional or available techniques. This has been a priority area of research for many, creating stalwarts and bringing inquisitive minds together in applying nanotechnology for the benefits of science and society.

8.1.1 Different ways to define NPs

ç

Nanotechnology is the science of understanding and controlling matter at dimensions of roughly 1-100 nm. Several organizations have defined nanoparticles (NPs) considered as standard in terms as shown in Table 8-1.

no.	Organization	
1	American Society of Testing and Materials	An ultrafine particle whose length in two to three places in between 1 and 100 nm
2	International Organization of Standardization	A particle having spanning of 1–100 nm
3	British Standards Institution	All the three dimensions of nanoobject are in the nanoscale range
4	National Institute of Occupational Safety and Health	A particle having diameter of $1-100$ nm and fiber having spanning of $1-100$ nm

 Table 8–1
 Definition of nanoparticles by different organization.

Lecture Notes in Networks and Systems 321

Milan Tuba Shyam Akashe Amit Joshi *Editors*

ICT Systems and Sustainability

Proceedings of ICT4SD 2021, Volume 1

Real-Time Markerless Facial Landmark Detection Using Deep Learning

Samyak Agarkar D and Kapil Hande D

Abstract Locating facial landmarks like eyes, eyebrows, nose, lips, facial outline, etc. can be used as the foundation for generating facial deformations caused by expressions and head movements, which is very crucial in 3D animation, the VFX industry, the gaming industry, VR & AR. This project intends to focus on building a robust and real-time Facial Landmark detection model by improving upon existing models. Over the past few years, a lot of research has been done for detecting facial landmarks without the use of markers. Yet, there is a huge scope for improvement in terms of accuracy and speed. There are three major types of facial Landmark detection algorithms: Holistic methods, Constrained Local Model (CLM), and regression-based methods. Holistic methods try to build a Global representation of facial appearance accurately but require a lot of processing power and time. CLM Build a local representation of facial appearance whereas, regression-based methods simply capture the facial shape and appearance information. Classical regression techniques are fast but have many limitations, for instance, they fail to detect landmarks in occluded faces. Neural networks and deep learning have opened up new possibilities in building models that are efficient, robust, and dependable. Though deep learning models are processor-intensive tasks, recent improvements in network compression and pruning have made it possible to use deep learning models in real-time on fairly low specification computers. This study intends to examine new combinations of previous implementations, new ideas, and heuristic information. The proposed model will be better in terms of speed than other models and on par if not better in terms of accuracy.

Keywords Facial landmark detection \cdot CNN \cdot Deep learning \cdot Machine learning \cdot AI

S. Agarkar $(\boxtimes) \cdot K$. Hande

CSE Department, Priyadarshini Bhagwati College of Engineering, Nagpur, Maharashtra, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 M. Tuba et al. (eds.), *ICT Systems and Sustainability*, Lecture Notes in Networks and Systems 321, https://doi.org/10.1007/978-981-16-5987-4_78 785

Print ISBN: 978-93-5547-071-3, cBook ISBN: 978-93-5547-072-0

Review of Data Mining Techniques in Environmental System: An Advanced Approach

M. S. Chaudhari^{1*} and N. K. Choudhari²

DOI: 10.9734/bpi/ramrcs/v1/4379F

Abstract

The emergence of various data mining algorithms and its application to various fields include medical imaging, network traffic analysis, environment system etc. Environment system now a day is the most important area of people's concern in today's world since it has daily impact on human beings life. May it be carthquake, soil erosion, deforesting, increasing summer temperature, rain fall density/intensity, flood occurrences and the most important is the impact of all these ES factors to directly and indirectly on the human beings and their behaviour. The capability of data mining algorithms of finding pattern in a data can be applied to Environment System data which is largely distributed, heterogeneous, sparse, multidimensional and heterogeneous. This paper gives a brief survey of essential steps, related algorithms and details processes that deals in designing and dealing with ES data that are essential in development of data mining tool for finding and interpreting patterns in environment system data sets to transforming it into pattern for analysis.

Keywords: Clustering; data mining; environmental system; pre-processing; post processing.

Abbreviations

ES	: Environmental System:
DM	: Data Mining;
KDD	: Knowledge Discovery from Data

1 Introduction

For the decades the ES is largely ignored area for analysis purpose due to lack of proper data analysis tool or unavailability of the scientific tools. But the emergence of Data mining techniques and its wide use in different domains for finding or discovering patterns in large data sets have attracted Environmental scientist to consider this technique.

Data mining is the process of extracting hidden patterns from data and is becoming an increasingly important tool to transform this data into knowledge. It can be applied to data sets of any size (large volumes of data) and can be used to uncover hidden patterns to find valuable information but it cannot uncover patterns which are not already present in the data set. With the advent of the era of big data, buildings have become not only energyintensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems [1].

Thus data mining is the overall process of finding and interpreting patterns from data, typically interactive and iterative, involving repeated application of specific data mining methods or algorithms and the interpretation of

Department of Computer Science & Engineering, Privadarshini Bhagwati College of Engineering, RTM Nagpur University, Nagpu Maharashira, Iodia.

¹Priyudarshini Bhagwati College of Engineering, RTM Nagyur University, Nagyur, Maharashtra, India.
*Corresponding author: E-mail: manojchaudhary2(@gmail.com;

Sentimental Analysis on Social Media by using Deep Learning

Andleeb Sahar¹, Archana Nikose²

¹ M.Tech.. Student, ²Assistant Professor

^{1,2}Computer Science & Engineering

^{1,2}Priyadarshini Bhagwati College of Engineering, RTM Nagpur University, Nagpur, India

¹saharandleeb09@gmail.com ²nikosearchu@gmail.com

Abstract- Detection of depression through messages sent by a user on social media can be a complex task due to the popularity and trends in them. In recent years, messages and social media has ended up being a very close representation of a person's life and his mental state. This is a huge stockpile of data about a person's behavior and can be used for detection of various mental illnesses (depression in our case) using Natural Language Processing and Deep Learning. This project is about constructing a deep learning model using NLP to predict such mental disorders. STM networks are well-suited to classifying, processing and making predictions based on time series data, since there can be lags of unknown duration between important events in a time series.

Keywords— depression, social media, mental illness, deep learning, NLP

INTRODUCTION

Depression as a common mental health disorder has long been denned as a single disease with a set of diagnostic criteria. It often co-occurs with anxiety or other psychological and physical disorders; and has an impact on feelings and behavior of the affected individuals. According to the WHO study, there are 322 million people estimated to suffer from depression, equivalent to 4.4% of the global population. In today's world, communication through social media is emerging as a big deal. They're willing to share their thoughts, stories and their personal feelings, mental states, desires on social network sites, blogging platforms etc.. Receivers use the manuscripts from emails and other types of social media comments to form proper reasoning and to correct the mistakes. When people write digitally on social media, their texts are processed automatically. Natural language processing techniques are used to infer people's mental behavior.

According to WHO, depression is a common worldwide folio that affects an enormous amount of individuals irrespective of their age. There are multiple factors that interfere the depression detection and treatment like lack of professional specialists, social shaming, improper diagnosis and so on. The ever-lasting depression disorder could lead to suicide if the depressed individuals are not supplied with proper consultancy, instant help and can also suffer from anxiety. This work is targeted on the detection of depression and anxiety from tweets. The experiment conducted during this work requires the text data so the chosen data source is Twitter where people tweet about their feelings, hopes, desires, thoughts, stories and mental states.

The goals of our research are: collect the publicly available media messages of healthy and self-diagnosed individuals which contains mixed emotions so evaluate the extracted Twitter data and apply NLTK and deep learning classifiers such as LSTM-RNN to predict depressive and anxiety tweets. We can search for a solution to a performance increase through a proper features selection and their multiple feature combinations. First, we choose the most beneficial linguistic features applied for depression identification to characterize the content of the posts. Second, we analyze the correlation significance, hidden topics and word frequency extracted from the text. We compare the performance results based on three single feature sets and their multiple feature combinations. In our experiment, we use data collected from the Reddit social media platform.

Security and Privacy Preserving of Data using CP-ABE Scheme

Ms. Swati Gajarlewar¹, Prof. A. A. Nikose²

^{1,2}Department of computer science and engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India

Abstract: Due to the rapid development of new technologies, data security is one of the big challenges in today's world. Particularly, in the healthcare field, a large amount of data is generated every day. To maintain the patient personal records by manually and handling them, is not very sure, and Also avoiding the paper-work in the health care industry is not a good practice. As more records are stored electronically they need security and confidentiality. Different methods were proposed to prevent both internal and external threats in the healthcare industry. In healthcare industries record are extremely sensitive; therefore requires more security and privacy when storing and sharing of those records. The security as well as the privacy of sensitive health records are the major challenges in health care industries. To prevent unauthorized access to the healthcare records the user should be authenticated to get access to the records. To secure the data, cryptography techniques are used. The first is symmetric key encryption techniques which use only one key for both encryption and decryption of the data. Their design simple but can be easily cracked by using brute force attacks. On the other hand, the second is asymmetric key encryption techniques which use a pair of keys, one for encryption, and the other for decryption, whose security is higher as compared to the symmetric key encryption ones but lack in time efficiency. In our proposed system different access control mechanisms are used to provide security and confidentiality on healthcare records. Keywords

I. INTRODUCTION

Data is continuously exchanged over different networks. It is correct to say that a huge part of the data is private or confidential which demands stronger techniques of encryption. There are two commonly used cryptography techniques for securing the data that is transmitted over the network, these are encryption and decryption. Therefore, there are a lot many encryption-decryption systems to encrypt and decrypt the transmitted information. The first is symmetric key encryption techniques which use only one key for both encryption and decryption of the data. Their design simple but can be easily cracked using brute force attacks. On the other hand, the second is asymmetric key encryption techniques which use a pair of keys, one for encryption, and the other for decryption, whose security is higher as compared to the symmetric key encryption ones but lack in time efficiency.

We want to store the data in cloud computing provide many advantages in today's IT world, which enable flexibility and low-cost usage of computing resource. It provides computing resources dynamically via the internet but has some challenges related to data confidentiality, data privacy, and security that may occur. In health care industries record are extremely sensitive; therefore required more security and privacy when storing and sharing those records. The security, as well as the privacy of the sensitive health records, is the major challenge that prevents in the health care industries. To prevent this from unauthorized Access to the health records the user will have to be authenticated to get access to the record. In this paper, we have developed a new health care system to increase patient trust and information integrity through privacy and security. By using the ECC with CP-ABE are providing more security and privacy of health care records. the implementation is proposed using python as the high-level programming language. python supports built libraries to develop cryptographic implementations. There are many third-party organizations and developer communities that provide cryptographic extensions to develop projects. Minimum time required to access and deliver records. To make the system more secure. Less time spent on non-value-added tasks.

II. AIM & OBJECTIVE

The purpose is to design a medical application that contains up to date information about the medical industry. That should improve the efficiency of medical record management. Providing the online interface for data owner and data user etc. Increasing the efficiency of medical record management. Minimum time required to access and deliver user records. To make the system more secure. Less time spent on non-value-added tasks.ECC is better than RSA, they provide better security by our proposed system. The CP-ABE are providing more security and privacy of health care records. The main aim of the proposed system to increase patient trust and information integrity through privacy and security.

STUDY OF LEACH PROTOCOL TO REDUCE NETWORK AREA ENERGY IN WIRELESS SENSOR NETWORK

Ms.Pranali Ikharkar¹, Dr.N.K.Choudhari², Dr. Ms.D.M.Kate³

¹PG Student, Department of EC engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India ²Professor, Department of EC engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India ³Assistant Professor, Department of EC engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India ***

Abstract - In remote sensor systems, filter convention control is more proficient in terms of channel utilization and energy efficiency. Vitality utilization is overwhelming portion in any wireless sensor systems to be work on. These are numerous low energy utilization steering Conventions outlined and tried to save vitality of a WSN and eventually to extend lifetime of network. This work proposed the utilization of LEACH (Low Energy Adaptive Clustering Hierarchy) calculation to which guarantees a harmony between energy utilization and postponement to determine energy issue in WSNs. Bunch based various levelled directing conventions assume a fundamental function in diminishing the energy utilization of remote sensor organizations (WSNs). To accomplish good execution as far as diminishing the sensor energy utilization, the proposed IEE-LEACH represents the quantities of the ideal CHs and precludes the hubs that are nearer to the base station (BS) to participate in the bunch Arrangement. Moreover, the proposed IEE-LEACH utilizes another limit for choosing CHs among the sensor hubs, and utilizes single jump, multi-bounce, and mixture correspondences to additionally improve the energy productivity of the organizations. The reproduction results exhibit that, contrasted and some current steering conventions, the proposed convention significantly decreases the energy utilization of WSNs

Key Words: LEACH Protocol1, WSN2

1. INTRODUCTION

Basic test in far off frameworks is that radio connections are dependent upon transmission control, obscuring, and obstruction, which spoil the data movement execution. This test is exacerbated in far off sensor organizations (WSNs), where genuine imperativeness and resource limitations block the use of various progressed strategies that might be found in other far off systems. The essential, financially savvy arrangement dependent on the methodology of fiery package length control to push ahead the execution in these fluctuating conditions. A trade-off exists between the long for to lessen the header overhead by making pack immense, and the need to diminish bundle screw up rates (PER) inside the rambunctious

Channel by utilizing little package length. Existing methodologies commonly necessitate that a bunch of boundaries to be deliberately tuned with the end goal that it can all the more likely arrange the degree of stream seen by a specific information follow. Nevertheless, any settled

arrangement of boundaries won't adjust to the changing conditions since one boundary set doesn't fit.

An organization of organizations is called an internetwork, or just the web. It is the biggest organization in presence on this planet. The web massively interfaces all WANs and it can have association with LANs and Home organizations. Web utilizes TCP/IP convention suite and utilizations IP as its tending to convention. Present day, Web is broadly executed utilizing IPv4. In light of lack of address spaces, it is slowly relocating from IPv4 to IPv6. (WSN) is a correspondence stage, whatever can affect a couple of Data Correspondence features later on. Preceding now, WSN has been getting real investigation thought due to its different suitability in a couple of fields of human endeavour. WSNs depends upon a couple of minimal nonessential free devices called sensor centres to shape an association. The specific center points in WSN can recognize an atmosphere, measure the distinguished data, or send it to a central unit for planning through a far off association.

The regular interest for WSN keeps growing, going from military use to public, ground, and space use. WSN rose in view of the enhancements in the smaller than usual electromechanical arrangement (MEMS) development and in far off trades. WSNs have starting late become a fascinating field of investigation starting late; a WSN is contained a couple of sensor canters (distant) which partners with structure a sensor field and a sink. The major issues in the WSN are the enormous number of centers used, their low power rating, and their impediment to short division correspondence These center points participate to accomplish information identifying, following, and transmission, making the far off sensors sensible for the checking of ordinary occasions and characteristic changes surveying traffic advancements, controlling security, and noticing military

These applications require a high trustworthiness of the sensor associations and to improve the immovable nature of sensor associations, progressing examinations have focused in on heterogeneous WSNs.

Experts have commonly accumulated sensor centers into bundles in bearing to achieve the purpose of association flexibility; each social affair has a gathering head (CH) who is picked by the people from a gathering or is pre-allotted by the association creator. Also, any sensor that is more

Trends in Machine Design

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS AUTHOR GUIDELINES REFERENCING PATTERN SAMPLE RESEARCH PAPER PUBLICATION MANAGEMENT TEAM EDITORIAL BOARD MEMBER PUBLICATION ETHICS & MALPRACTICE STATEMENT -----

Home > Vol 8, No 1 (2021) > Anjikar

Mechanical Monster's Application in Era of Agricultural Industry: A Review

Akshay Anjikar, Vinay Chandra Jha

Abstract

A role of Agriculture is so critical in the Indian economy. Over the last few decades, Indian agriculture has recorded good growth. Implementing done in this area. The multipurpose farming robot is a fundamental anew ideas in this field is very important, although a lot of work has been d major agricultural machine for full yield. Weeding, sowing seeds and spraying pesticides is the conventional method in agriculture. In India, bullocks, horses, and buffalo are still used by many farmers for agricultural operations. This would not satisfy the need for agricultural energy needs, in comparison to other countries around the world. To reduce the man power we are employing this prototype and which will fulfil all requirements and problems in real life. India is a country focused on agriculture in which 70% of individuals rely on the results of farming. But if we observe that with population growth the farm is spread among the family and because of this, farmers in India kept only two acres of farm on average. Economically, farmers are still very poor because they are unable to afford tractors and other expensive machinery, so they use conventional farming methods. So, we are designing this machinery that will fulfil all this need and solve the problem of labor.

Keywords

Agriculture, ploughing, water, fertilizer, farmers

Full Text:

Subscribers Only

References

Yorozu T, Hirano M, Oka K, Tagawa Y. Electron spectroscopy studies on magneto-optical media and plastic substrate interface. IEEE Transl J Magn Jpn. 1987;2(8):740–1. doi: 10.1109/TJMJ.1987.4549593.

Zakiuddin KS, Modak JP. Design and development of the human energized chaff cutter. New York science journal. 2010.

OPEN JOURNAL SYSTEMS

Journal Help

SUBSCRIPTION Login to verify subscription

USER	
Username	
Password	
Remer Login	nber me

NOTIFICATIONS

JOURNAL CONTENT

Search

Search Sco	ре
All	~
Search	

Browse

- <u>By Issue</u>
- By Author
 By Title
- Other
- Journals

FONT SIZE

INFORMATION

- For Readers
- For Authors
- For Librarians

Design and Implementation of LEACH Protocol for Wireless Sensor Network to Reduce for Network Area Energy Improvement and Security Using MATLAB

Ms. Pranali Ikharkar¹, Dr. N. K. Choudhari², Dr. Ms. D. M. Kate³

¹PG Student, Department of EC Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India ²Professor, Department of EC Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India ³Assistant Professor, Department of EC Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India

Abstract: In this Paper Wireless Sensor Networks (WSNs) have exploded in popularity in recent years as one of the fastestgrowing developing technologies for delivering data over the internet. WSN is rapidly expanding its branches in practically every field of science and technology today. The WSN is made up of several tiny nodes that handle sensing, data collecting, aggregation, compression, and transmission. Because the sensor nodes are so small, the little battery only has a limited amount of power. As a result, the key issue for WSN is to effectively employ this insufficient battery capacity to extend the sensor networks' lifetime while reducing energy usage. However, when it comes to numbers, However, a number of advanced clustered routing protocols have already been used in WSN to reduce the amount of energy consumed. The study's main goal is to improve the Low Energy Adaptive Clustering Hierarchy (LEACH) protocol by implementing a new clustering routing topology. The process for selecting cluster heads in our proposed model is identical to that used in the standard Leach protocol. We have, however, partitioned the network's whole area into many rectangle dispersed sections. The LEACH algorithm was used in each area.

Keywords: LEACH Protocol, WSN

I. INTRODUCTION

WSN has seen an upsurge in attention in recent years as a result of its employment in several sectors such as military, medicinal, and environmental applications [1, 2]. The WSN is made up of a large number of low-power microsensor nodes that are spread across a vast area and have at least one BS [3]. Every micro-sensor collects data about physical or environmental parameters such as pressure, temperature, humidity, and so on [4] and sends it back to the BS. The placements of the nodes in a WSN are not preset, allowing the network to organise itself autonomously [5, 6], contains sensor nodes that are randomly scattered, a BS that receives all data obtained from the environment, and the user who obtained data through The power unit is one of the most significant units. Because the batteries can't be recharged or changed, sensor nodes in such an environment are energy-constrained [3]. As a result, building an energy-aware protocol has piqued attention as a means of extending network longevity [8]. As a result, in most applications where all sensor nodes are bound by energy, which is connected to the network's lifetime, energy consumption is the most critical element. The limited power of nodes necessitates the creation of an energy-saving communication protocol An organisation of organisations is called an internetwork, or just the web. It is the biggest organisation in presence on this planet. The web massively interfaces all WANs and it can have association with LANs and Home organisations. The Web makes use of the TCP/IP protocol stack and IP as its default protocol. In today's world, IPv4 is widely used to access the Internet. It is gradually migrating from IPv4 to IPv6 due to a scarcity of address spaces. (WSN) is a correspondence stage that can have an impact on a few Data Correspondence characteristics in the future. WSN has gotten a lot of attention recently because of its various applications in a variety of domains of human effort. WSNs are wireless sensor networks.

WSN's popularity continues to expand, with applications ranging from military to public, ground, and space. WSN has risen as a result of advancements in the creation of microelectromechanical systems (MEMS) and in distant commerce. WSNs have become a fascinating field of research in recent years; a WSN is made up of a couple of sensor centres (distant) that work together to form a sensor field and a sink.

Design and Analysis of MIMO Dual Band Patch Antenna for 5G New Radio Applications in Mobile Terminals

Swati Dhandade, Tarannum Pathan

Student, Department of Electronics & communication, Priyadarshini Bhagwati College of Engineering, Nagpur, India.

Professor, Department of Electronics & communication, Priyadarshini Bhagwati College of Engineering, Nagpur, India.

Abstract: This paper presents a dual-band monopole antenna design with compact size for 5G communication under 6 GHz band frequency. The metallic monopole stub structure is used for miniaturization of antenna. It has a compact size of 24 mm × 14 mm × 1.6 mm³. The suggested antenna has been design on FR4 material with εr = 4.4 with 1.6 thickness. The L-shape monopole antenna is modified by adding semi-circular element in radiating structure of monopole to obtain dual-band resonance. The proposed antenna has 5G application in the bands of 2.5 GHz (2.34 GHz-2.62 GHz) and 3.6 GHz (3.20 GHz-5.20 GHz). The bandwidth of antenna getting 280MHz and 2300MHz at 2.5GHz and 3.6GHz respectively. VSWR is less than 1.06 for both the bands. The designed dual band monopole antenna covers 5G bands of 2.3-2.4GHz (n30/n40), 2.4-2.5GHz (n7/n38/n41/n90), and 3.2-5.2GHz (n77/n78/n80). This proposed dual band monopole antenna is suitable for 5G Communications.

Index Terms - Monopole, Dual-band, Miniaturization, 5G and L shape.

Date of Submission: 02-04-2021

Date of Acceptance: 16-04-2021

I. Introduction

The fifth generation (5G) communication has been widely discussed to provide high data-rate communications in the future. The design and testing of the 5G communication system huge on the understanding of the propagation channels [1], and a large body of channel measurements is thus required. Currently, 5G mobile systems are broadening their spectrum to support a high data rate. In the World Radio Communication Conference (WRC) in 2015, the 5G candidate frequency bands below 6 GHz have been widely discussed, and the following frequency ranges have been suggested: 470–694, 2300–2700, 3300–3800, and 4500–4990 MHz Among them, 2.5 GHz & 3.5 GHz has been widely considered, as it can be accepted for most of countries. Therefore this paper was focused on the propagation channel characterizations at 2.5/3.5 GHz bands. Previously, 2.5/3.5 GHz propagation channel has been studied mainly for the Wireless applications with limited bandwidth & large size [2-4] or the Broadband Fixed Wireless Access [5-6]. Few works has been conducted for the 5G wireless propagation channels.

A compact dual-band antenna is designed for 4.5GHz and 7.8GHz 5G and C-band applications and the antenna satisfied the -10dB impedance bandwidth is 64MHz (4.468GHz4.532GHz) and 128MHz (7.736GHz-7.864GHz) [7]. Dual-band miniaturized planar inverted F-antenna is designed for WLAN and 5G applications which has been designed to operate in the WLAN (2.4GHz), Bluetooth (2.4GHz), LTE2500 (2.5GHz) and 5G communication (4.5GHz) [8]. Single band elliptical Microstrip patch antenna is designed at 3.5GHz for 5G with impedance bandwidth around 700MHz and size is 48 x 26 mm [9]. Rectangular Patch antenna at 4.5GHz for 5G with impedance bandwidth and large size so with the improved bandwidth & compactness which has been taken as an objective for this research work.

In this paper, a compact dual-band monopole antenna is proposed. In presented antenna, two frequency bands has been covered 2.5 GHz and 3.5 GHz. A compact dual-band antenna with excellent impedance bandwidth is proposed.

II. Antenna Configuration

The dimensions and geometry of the proposed dual band monopole antenna is shown in Fig. 2. The radiating L-shape element has been printed on top side of FR4 Substrate with ϵ r=4.4 and thickness (h) is 1.6mm. Partial ground plane is used to obtain the desired bandwidth and radiation response. Antenna-1 (as shown in Fig.1.a) is optimized to operate at frequency 3.5 GHz. The Antenna-1 structure incorporates L-shaped radiating

DEVELOPMENT OF ORBITAL WRAPPING MACHINE

Smitesh Bobde¹, Shailesh Dhomne¹, Saurabh Bobde¹, S G Ghugal²

¹- Assistant Professor, Dr. Babasaheb Ambedkar College of Engineering & Research, Nagpur ²- Assistant Professor, Priyadarshini Bhagwati College of Engineering, Nagpur.

ABSTRACT

The aim of this paper is to study the Orbital Wrapping Machine and their various components and to develope a wrapping machine affordable for small scale industries or small start-ups. After taking analysis we got to know that most of the wrapping are too much costly which a small manufacturer cannot afford, so they use some old techniques to complete their process. So, we are going to build an affordable, easy to use, having basic functionalities for a small-scale manufacturer. In this machine only basic important functions are retained so that we can cut the cost in making. In this project we have done our best to design, fabricate a working model of Orbital Wrapping Machine.

1. INTRODUCTION

Wrapping Machine are used in manufacturing units for covering the surface of the product so that the surface of the product remains protected for unnecessary moisture.

Unnecessary moisture leads to corrosion, therefore wrapping the product with good stretch film protects the surface from getting corrode. Most of the wrapping machines are expensive which a small manufacturer cannot afford. They have a lot of features such as automatic cutting of the stretch film feature which increases the cost of the machine. For a start-up level manufacturer, they need basic functionality to do their job.

So, after studying the facts we made a successful model of a wrapping machine with basic features considering the need.

2. METHODOLOGY

As per our study we have found that the orbital wrapping machine used in industries are not suitable for the small or intermediate size of product to be wrapped. Due to the light weight of the product, they might get uplift with the wrap material or stretch film. To overcome this situation, we make changes in traditional wrapping machine by providing supporting roller and clamp which will hold the product during wrapping.

2.1 PROBLEM IDENTIFICATION

The number of Orbital wrapping machine are used in large scale industries to wrap the Pallets and other products are very expensive which might not be affordable for small scale industries. The other problem which are generally observed in wrapping machine are. Tearing of stretch film, Shrinkage of wrap materials, Wrapping on Bar too loose or too tight, Uneven wrapping on the Bars, Loose wrapping cause the materials to get rust or other damages seen on bars, Lag in feeding movement of the materials to be wrapped by conveyors.

2.2 Design

The designing consist of selection of material and power source, synthesis of the mechanism, force analysis, determining the dimensions. This has been done and explained below in the part list.

Security and Privacy Preserving of Data using CP-ABE Scheme

Ms. Swati Gajarlewar¹, Prof. A. A. Nikose²

^{1,2}Department of computer science and engineering, Priyadarshini Bhagwati College of Engineering, Nagpur, India

Abstract: Due to the rapid development of new technologies, data security is one of the big challenges in today's world. Particularly, in the healthcare field, a large amount of data is generated every day. To maintain the patient personal records by manually and handling them, is not very sure, and Also avoiding the paper-work in the health care industry is not a good practice. As more records are stored electronically they need security and confidentiality. Different methods were proposed to prevent both internal and external threats in the healthcare industry. In healthcare industries record are extremely sensitive; therefore requires more security and privacy when storing and sharing of those records. The security as well as the privacy of sensitive health records are the major challenges in health care industries. To prevent unauthorized access to the healthcare records the user should be authenticated to get access to the records. To secure the data, cryptography techniques are used. The first is symmetric key encryption techniques which use only one key for both encryption and decryption of the data. Their design simple but can be easily cracked by using brute force attacks. On the other hand, the second is asymmetric key encryption techniques which use only one key for decryption, whose security is higher as compared to the symmetric key encryption ones but lack in time efficiency. In our proposed system different access control mechanisms are used to provide security and confidentiality on healthcare records.

I. INTRODUCTION

Data is continuously exchanged over different networks. It is correct to say that a huge part of the data is private or confidential which demands stronger techniques of encryption. There are two commonly used cryptography techniques for securing the data that is transmitted over the network, these are encryption and decryption. Therefore, there are a lot many encryption-decryption systems to encrypt and decrypt the transmitted information. The first is symmetric key encryption techniques which use only one key for both encryption and decryption of the data. Their design simple but can be easily cracked using brute force attacks. On the other hand, the second is asymmetric key encryption techniques which use a pair of keys, one for encryption, and the other for decryption, whose security is higher as compared to the symmetric key encryption ones but lack in time efficiency.

We want to store the data in cloud computing provide many advantages in today's IT world, which enable flexibility and low-cost usage of computing resource. It provides computing resources dynamically via the internet but has some challenges related to data confidentiality, data privacy, and security that may occur. In health care industries record are extremely sensitive; therefore required more security and privacy when storing and sharing those records. The security, as well as the privacy of the sensitive health records, is the major challenge that prevents in the health care industries. To prevent this from unauthorized Access to the health records the user will have to be authenticated to get access to the record. In this paper, we have developed a new health care system to increase patient trust and information integrity through privacy and security. By using the ECC with CP-ABE are providing more security and privacy of health care records, the implementation is proposed using python as the high-level programming language. python supports built libraries to develop cryptographic implementations. There are many third-party organizations and developer communities that provide cryptographic extensions to develop projects. Minimum time required to access and deliver records. To make the system more secure. Less time spent on non-value-added tasks.

II. AIM & OBJECTIVE

The purpose is to design a medical application that contains up to date information about the medical industry. That should improve the efficiency of medical record management. Providing the online interface for data owner and data user etc. Increasing the efficiency of medical record management. Minimum time required to access and deliver user records. To make the system more secure. Less time spent on non-value-added tasks.ECC is better than RSA, they provide better security by our proposed system. The CP-ABE are providing more security and privacy of health care records. The main aim of the proposed system to increase patient trust and information integrity through privacy and security.